Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(3): 481-492, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690849

RESUMO

Cell proliferation is fundamental for almost all stages of development and differentiation that require an increase in cell number. Although cell cycle phase has been associated with differentiation, the actual process of proliferation has not been considered as having a specific role. Here we exploit human embryonic stem cell-derived endodermal progenitors that we find are an in vitro model for the ventral foregut. These cells exhibit expansion-dependent increases in differentiation efficiency to pancreatic progenitors that are linked to organ-specific enhancer priming at the level of chromatin accessibility and the decommissioning of lineage-inappropriate enhancers. Our findings suggest that cell proliferation in embryonic development is about more than tissue expansion; it is required to ensure equilibration of gene regulatory networks allowing cells to become primed for future differentiation. Expansion of lineage-specific intermediates may therefore be an important step in achieving high-fidelity in vitro differentiation.


Assuntos
Cromatina , Pâncreas , Humanos , Linhagem da Célula/genética , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Pâncreas/metabolismo , Elementos Facilitadores Genéticos/genética
2.
Nat Cell Biol ; 24(6): 833-844, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681011

RESUMO

High-resolution maps of embryonic development suggest that acquisition of cell identity is not limited to canonical germ layers but proceeds via alternative routes. Despite evidence that visceral organs are formed via embryonic and extra-embryonic trajectories, the production of organ-specific cell types in vitro focuses on the embryonic one. Here we resolve these differentiation routes using massively parallel single-cell RNA sequencing to generate datasets from FOXA2Venus reporter mouse embryos and embryonic stem cell differentiation towards endoderm. To relate cell types in these datasets, we develop a single-parameter computational approach and identify an intermediate en route from extra-embryonic identity to embryonic endoderm, which we localize spatially in embryos at embryonic day 7.5. While there is little evidence for this cell type in embryonic stem cell differentiation, by following the extra-embryonic trajectory starting with naïve extra-embryonic endoderm stem cells we can generate embryonic gut spheroids. Exploiting developmental plasticity therefore offers alternatives to pluripotent cells and opens alternative avenues for in vitro differentiation.


Assuntos
Endoderma , Transcriptoma , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas , Camundongos , Gravidez
3.
Stem Cell Reports ; 17(5): 1215-1228, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35452596

RESUMO

With the aim of producing ß cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to ß cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to ß cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive ß cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production.


Assuntos
Células Secretoras de Insulina , Células-Tronco Pluripotentes , Diferenciação Celular , Fibronectinas/farmacologia , Humanos , Pâncreas , Polímeros
4.
Development ; 146(24)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740534

RESUMO

Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.


Assuntos
Endoderma/embriologia , Fator Inibidor de Leucemia/fisiologia , Ligantes da Sinalização Nodal/fisiologia , Células-Tronco Pluripotentes/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Endoderma/citologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Ligantes da Sinalização Nodal/metabolismo , Transdução de Sinais/fisiologia
5.
Stem Cells Transl Med ; 3(10): 1188-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25122688

RESUMO

Myelodysplastic syndrome (MDS) is a disorder of hematopoietic stem cells (HSCs) that is often treated with DNA methyltransferase 1 (DNMT1) inhibitors (5-azacytidine [AZA], 5-aza-2'-deoxycytidine), suggesting a role for DNA methylation in disease progression. How DNMT inhibition retards disease progression and how DNA methylation contributes to MDS remain unclear. We analyzed global DNA methylation in purified CD34+ hematopoietic progenitors from MDS patients undergoing multiple rounds of AZA treatment. Differential methylation between MDS phenotypes was observed primarily at developmental regulators not expressed within the hematopoietic compartment and was distinct from that observed between healthy hematopoietic cell types. After AZA treatment, we observed only limited DNA demethylation at sites that varied between patients. This suggests that a subset of the stem cell population is resistant to AZA and provides a basis for disease relapse. Using gene expression data from patient samples and an in vitro AZA treatment study, we identified differentially methylated genes that can be activated following treatment and that remain silent in the CD34+ stem cell compartment of high-risk MDS patients. Haploinsufficiency in mice of one of these genes (NR4A2) has been shown to lead to excessive HSC proliferation, and our data suggest that suppression of NR4A2 by DNA methylation may be involved in MDS progression.


Assuntos
Metilação de DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/genética , Antígenos CD34/metabolismo , Azacitidina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Estudos Longitudinais , Síndromes Mielodisplásicas/tratamento farmacológico , Reação em Cadeia da Polimerase , Transcriptoma
6.
PLoS One ; 8(8): e71099, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940695

RESUMO

Treatment with the demethylating drugs 5-azacytidine (AZA) and decitabine (DAC) is now recognised as an effective therapy for patients with Myelodysplastic Syndromes (MDS), a range of disorders arising in clones of hematopoietic progenitor cells. A variety of cell models have been used to study the effect of these drugs on the methylation of promoter regions of tumour suppressor genes, with recent efforts focusing on the ability of these drugs to inhibit DNA methylation at low doses. However, it is still not clear how nano-molar drug treatment exerts its effects on the methylome. In this study, we have characterised changes in DNA methylation caused by prolonged low-dose treatment in a leukemic cell model (SKM-1), and present a genome-wide analysis of the effects of AZA and DAC. At nano-molar dosages, a one-month continuous treatment halved the total number of hypermethylated probes in leukemic cells and our analysis identified 803 candidate regions with significant demethylation after treatment. Demethylated regions were enriched in promoter sequences whereas gene-body CGIs were more resistant to the demethylation process. CGI methylation in promoters was strongly correlated with gene expression but this correlation was lost after treatment. Our results indicate that CGI demethylation occurs preferentially at promoters, but that it is not generally sufficient to modify expression patterns, and emphasises the roles of other means of maintaining cell state.


Assuntos
Azacitidina/análogos & derivados , Azacitidina/farmacologia , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Corpos de Inclusão Intranuclear/genética , Análise em Microsséries , Fatores de Tempo , Células Tumorais Cultivadas
7.
BMC Dev Biol ; 10: 82, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20687916

RESUMO

BACKGROUND: C. elegans TGF-beta-like Sma/Mab signaling pathway regulates both body size and sensory ray patterning. Most of the components in this pathway were initially identified by genetic screens based on the small body phenotype, and many of these mutants display sensory ray patterning defect. At the cellular level, little is known about how and where these components work although ray structural cell has been implicated as one of the targets. Based on the specific ray patterning abnormality, we aim to identify by RNAi approach additional components that function specifically in the ray lineage to elucidate the regulatory role of TGF-beta signaling in ray differentiation. RESULT: We report here the characterization of a new member of the Sma/Mab pathway, mab-31, recovered from a genome-wide RNAi screen. mab-31 mutants showed ray cell cluster patterning defect and mis-specification of the ray identity. mab-31 encodes a nuclear protein expressed in descendants of ray precursor cells impacting on the ray cell's clustering properties, orientation of cell division plane, and fusion of structural cells. Genetic experiments also establish its relationship with other Sma/Mab pathway components and transcription factors acting upstream and downstream of the signaling event. CONCLUSION: mab-31 function is indispensable in Sma/Mab signal recipient cells during sensory rays specification. Both mab-31 and sma-6 are required in ray lineage at the late larval stages. They act upstream of C. elegans Pax-6 homolog and repress its function. These findings suggested mab-31 is a key factor that can integrate TFG-beta signals in male sensory ray lineage to define organ identity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Estudo de Associação Genômica Ampla , Masculino , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...